

A Journey with mmWave research

The Networking Channel April 07, 2021

Joerg Widmer Research Professor IMDEA Networks, Madrid, Spain

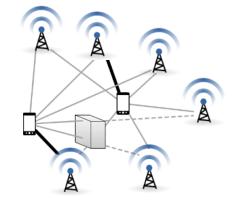
Developing the Science of Networks

Discussion Topics

- Important open research questions for wide-spread adoption
- Lessons learned from first deployments
- Availability of **real-world measurement data**
- Testbeds and platforms for practical mm-wave research
 - Making testbed facilities more accessible to the research community
 - $-\operatorname{How}\,\operatorname{can}\,\operatorname{we}\,\operatorname{establish}\,\operatorname{and}\,\operatorname{maintain}\,\operatorname{large}\,\operatorname{software}\,\operatorname{facilities}$

Where Are We Now?

- Mm-wave offers multi-Gbit/s per user data rates
 - Part of 5G/6G and IEEE 802.11ad/ay standards
 - First generation of hardware has demonstrated feasibility (cost, hardware complexity, energy consumption, device integration, ...)
 - But no widespread adoption of IEEE 802.11ad
- First deployment experience
 - Verizon 5G mm-wave (also T-Mobile, AT&T)
 - Facebook Terragraph project
- Single link beam-training works well even for mobile scenarios
 - As long as there is no blockage


What is Missing?

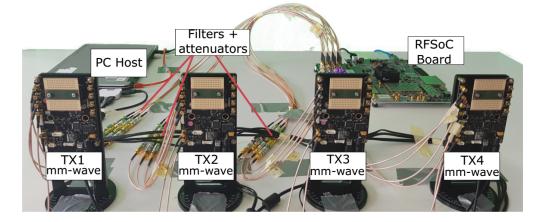
ner@imdea.org)

- Network resilience (with low overhead)
 - Fast handover to deal with limited coverage
 - Fast (self-) blockage detection and recovery
 - Multi-connectivity, efficient failover to sub-6 GHz
- Efficient algorithms for large, dense deployments
 - Many BSs, channel quality only known after beam training
- Localization, tracking, sensing systems – Joint communication and sensing
- Real-world experience with more complex and compelling use cases!

A Quick Glance at Tools

imdea

MIMORPH: Open-Source Platform for MIMO Experimentation

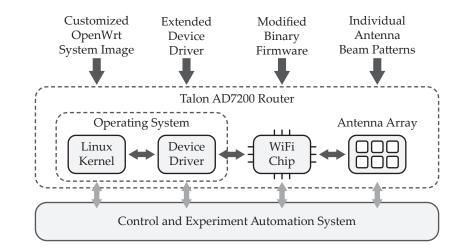

Now:

- Support for 4x4 mm-wave with 2GHz of bandwidth and 8x8 sub-6 GHz MIMO
- Simultaneous mm-wave and sub-6 GHz operation
- Real-time (ns-level) beam steering
- Offline frame generation and decoding in C++/Matlab
- Packet detection and channel estimation on the FPGA
- Full-duplex capable

Future:

- Flexibly move functionality between software and the FPGA
- Real-time transceiver (802.11ad/ay and 5G+)
- Joint communication & radar
- Scale to 8x8 MIMO with newer boards

Coming soon: ACM MobiSys 2021


Based on Xilinx RFSoC

Off-the-Shelf Devices as Research Platform

- Highly important for standard compliant, large scale IEEE 802.11ad at 60GHz deployments
- Support for TP-Link Talon and Mikrotik wAP 60G
- Ported OpenWRT to the routers
 - Custom embedded Linux OS (open source)
 - Extended 802.11ad Linux drivers
- NeXMON framework for binary driver firmware patching
 - Custom extensions to the firmware
 - Modify beam training, beam forming, ...
 - Small cells, 5G offloading

Joint work with TU Darmstadt https://github.com/seemoo-lab/talon-tools

Joerg Widmer (joerg.widmer@imdea.org)

IEEE 802.11ad/ay for the ns-3 Simulator

- Comprehensive simulation model of IEEE 802.11ad for the ns-3 network simulator
 - The code for our model is publicly available on GitHub: <u>https://github.com/hanyassasa87/ns3-802.11ad.git</u>
 - Being merged into main line ns-3
- Currently implementing IEEE 802.11ay
 - Efficient simulation of SU/MU-MIMO
 - High fidelity simulation of a large-scale, heterogeneous 802.11ay networks
- Research work:
 - In-depth study of 802.11ad protocol performance at scale
 - Analysis of 802.11ay beam training and impact of interference

INS-3

