Emerging Trends in AI/ML and Implications for Networking Research

2021/05/19 @ theNetworkingChannel Dan Pei Tsinghua University

Data Access

Algorithm competition, live testbed, etc. to bring together the community

Q: There is need for fair and broader access to data needed for developing AI models and addressing some of the challenges, but the data is currently controlled by a few operators? What can be done to address this challenge?

AIOps Challenge Algorithm Competitions

Datasets: https://github.com/netmanaiops

- 2018 AIOps Challenge: time series anomaly detection. Published labeled data from 5 Internet companies. More than 50 teams participated. Papers based on these data were published in KDD, IWQoS, etc. Data Downloadable @ <u>https://github.com/NetManAIOps/KPI-Anomaly-Detection</u>
- 2019 AIOps Challenge: multi-attribute time series anomaly localization. Published data from an Internet company. More than 60 teams participated.

Data Downloadable @ https://github.com/NetManAIOps/MultiDimension-Localization

2020 AIOps Challenge: Anomaly detection and localization in a microservice system. Published data from a telecom company. More than 100 teams participated.
Data Downloadable @ https://github.com/NetManAIOps/AIOps-Challenge-2020-Data

Data Downloadable @ https://github.com/NetManAIOps/AIOps-Challenge-2020-Data

• 2021 AIOps Challenge: Anomaly detection and localization in banking systems. To be published data from two banks. More than 200 teams participated

A representative and live Net+AI testbed that the community can contribute and use

- New components can plug-and-play onto testbed
- Many missing pieces
 - Large-enough Industry-grade microservice based system
 - Realistic traffic
 - Failure patterns from industry
 - Failure injection systems
 - Realistic evaluation metrics

Use knowledge to glue all components (including AI-enabled ones)

Clearly define the properties and capabilities of AI-enabled component in the overall architecture

Q1: "It is hypothesized that as ML/AI solutions get infused in design of a range of networking functions, network architecture can be automated through simply optimizing generic AI models? What are your thoughts?"

Q2: "As networks are becoming increasingly mission critical; how must ML/AI strategies be adapted to operate in these environments?"

Q3: " AI/ML solutions have been shown to be brittle to adversarial perturbations or deviations from training data. Do you believe this will limit the use of AI/ML solutions in mission critical networks? How can network operators mitigate this threat?"

Pitfalls: use general ML algorithms as blackbox to tackle Ops challenges

General Machine Learning Algorithms

ARIMA, Time Series Decomposition, Holt-Winters, CUSUM, SST, DiD, DBSCAN, Pearson Correlation, J-Measure, Two-sample test, Apriori, FP-Growth, K-medoids, CLARIONS, Granger Causality, Logistic Regression, Correlation analysis (event-event, event-time series, time series-time series), hierarchical clustering, Decision tree, Random forest, support vector machine, Monte Carlo Tree search, Marcovian Chain, multi-instance learning, transfer learning, CNN, RNN, VAF, GAN, NLP

So far, AI succeeds only in specific application scenario in specific area in specific industry

Treat AI as a high-level programming language, to "code" some components

Output of AI-enabled components are probabilistic rather than deterministic

A Net+AI system: design the overall system around each component's known capability and property, and "glue" the components using "knowledge"

Fully utilize latest AI technologies that enable better machine-human hybrid architecture

Active Learning, Transfer Learning, Ensemble Learning, Knowledge Graph, ...

Q1: What are the expected breakthroughs in AI/ML technologies that will hold the most relevance for next generation communication networks and why?

Q2: What in your view are the most significant recent developments that hold promise for design and operation of communication networks?

Q3: What breakthroughs do you expect in the next 5-10 years? Can we expect networks to operate autonomously in the next 10 years?

Time series anomaly detection: diverse metrics and their diverse anomalies

Labels are expensive and often unavailable \rightarrow Unsupervised approaches Hyperparameters affect unsupervised approaches' performance \rightarrow active learning (human in the loop) Training data can be sparse; data distribution can change \rightarrow transfer learning

Knowledge graph from human experts for mapping profile to a set of classifiers

Thanks! Q&A

