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Data Access

Algorithm competition, live testbed, etc. to bring together the community

Q: There 1s need for rair and broader access to data needed rfor

developing Al models and addressing some of the challenges, but
the data Is currently controlled by a rew operators? What can be

done to address this challenge?
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AlOps Challenge Algorithm Competitions

Datasets: https://github.com/netmanaiops

« 2018 AIOps Challenge: time series anomaly detection. Published labeled data from 5 Internet companies. More than 50 teams participated.
Papers based on these data were published in KDD, INQOoS, etc.
Data Downloadable @ https://github.com/NetManAIOps/KPI-Anomaly-Detection

« 2019 AIOps Challenge: multi-attribute time series anomaly localization. Published data from an Internet company. More than 60 teams
participated.
Data Downloadable @ https://github.com/NetManAIOps/MultiDimension-Localization

« 2020 AIOps Challenge: Anomaly detection and localization in a microservice system. Published data from a telecom company. More than 100
teams participated.
Data Downloadable @ https://github.com/NetManAlOps/AlOps-Challenge-2020-Data

« 2021 AIOps Challenge: Anomaly detection and localization in banking systems. To be published data from two banks. More than 200 teams
participated
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https://github.com/NetManAIOps/KPI-Anomaly-Detection
https://github.com/NetManAIOps/MultiDimension-Localization
https://github.com/NetManAIOps/AIOps-Challenge-2020-Data

A representative and live Net+AlI testbed that the

community can contribute and use

* New components can plug-and-play onto
testbed

* Many missing pieces

* lLarge-enough Industry-grade microservice
based system

* Realistic traffic
* Failure patterns from industry
* Failure injection systems

 Realistic evaluation metrics
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Use knowledge to glue all components (including Al-enabled ones)

Clearly define the properties and capabilities of Al-enabled component in the overall architecture

Q1: ‘It is hypothesized that as ML/Al solutions get infused in design of a range of networking functions,
network architecture can be automated through simply optimizing generic Al models? What are your
thoughts?”

Q2:  "As networks are becoming increasingly mission critical, how must ML/Al strategies be adapted to
operate in these environments?”

Q3 " Al/ML solutions have been shown to be brittle to adversarial perturbations or deviations from
training data. Do you believe this will imit the use of Al/ML solutions in mission critical networks? How can
network operators mitigate this threat?”
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Pitfalls: use general ML algorithms as blackbox
to tackle Ops challenges

Fallure Fallure Fallure Fallure

Discovery Mitigation Repair Avolidance

Huge Gap

General Machine Learning Algorithms

ARIMA, Time Series Decomposition, Holt-Winters, CUSUM, SST,DiD,DBSCAN,
Pearson Correlation, J-Measure, Two-sample test, Apriori, FP-Growth, K-medoids, CLARIONS,

Granger Causality, Logistic Regression, Correlation analysis (event-event, event-time series,
time series-time series) , hierarchical clustering, Decision tree, Random forest, support vector
machine, Monte Carlo Tree search, Marcovian Chain, multi-instance learning, transfer learning,




So far, Al succeeds only in specific application scenario in specific area in
specific industry

Specific
Scenario

Al
Applications

Industry Al

Treat Al as a high-level programming language, to “code” some components

Output of Al-enabled components are probabilistic rather than deterministic



A Net+Al system: design the overall system around each component’ s known
capability and property, and “glue” the components using “knowledge”
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Fully utilize latest Al technologies that enable
better machine-human hybrid architecture

Active Learning, Transfer Learning, Ensemble Learning, Knowledge Graph, ...

Q1. What are the expected breakthroughs in Al/ML technologies that will hold the
most relevance for next generation communication hetworks and why?

Q2 What in your view are the most significant recent developments that hold
oromise for design and operation or communication networks?

O3 What breakthroughs do you expect in the next 5-10 years? Can we expect
networks to operate autonomously in the next 10 years?
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Time series anomaly detection: diverse metrics and their diverse anomalies

(1) Seasonal metrics (5) Detect too rapid a change
o 5 11
(2) Periodicity shift (6) Detect the lack of seasonality.
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(4) Identify variable metrics and obtain extreme threshold (8) Robust against data loss or interruption
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Labels are expensive and often unavailable - Unsupervised approaches

Hyperparameters affect unsupervised approaches’

performance

- active learning (human in the loop)

Training data can be sparse; data distribution can change > transfer learning

Time series anomaly detection

Statistical methods
(manual algorithm

selection and Ensemble

learning

parameter-tuning)

INFOCOM 2012 S

IPCCC 2018

Conditional VAE to detect
seasonality-violating anomalies

Unsupervised
Learning (VAE)

INFOCOM 2019

Adversarial Training
+VAE

Clustering-
based transfer
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Knowledge graph from human experts for
mapping profile to a set of classifiers

Cross Correlation Analysis

Seasonality Length

Shift = -3, Correlation= .81

Data 1 is compared to a Data2 that has been shifted back by 3 months.
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Other knowledge: causality rules,
topology, etc.



Thanks!
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