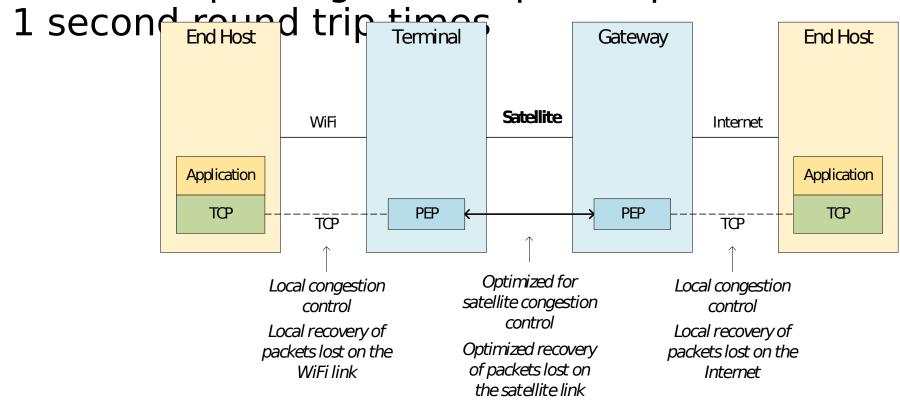
The Impact of QUIC on SATCOM PEP and Traffic Classification


The Networking Channel January 19, 2022

John Border – Hughes Network Systems

<u>John.Border@Hughes.com</u>

SATCOM Performance Enhancing Proxies

 The goal is to achieve 100 Mbps (or greater) download and 10 Mbps (or greater) upload speeds even with up to

Why Does SATCOM Use PEPs?

- Performance Enhancing Proxies are used to speed up slow start and congestion recovery
 - Local acknowledgements on each side of the spacelink hide the satellite latency to speed up window growth
- PEPs are used to improve error recovery from lost packets:
 - Local error recovery (hiding the overall end to end latency)
 from packets dropped outside the satellite network
 - Particularly important for packets dropped in Wi-Fi networks at the end user's site
 - Optimized for the satellite link error recovery for packets dropped crossing the satellite network

Traffic Classification

From Wikipedia

Traffic classification is an automated process which categorises (sic) computer network traffic according to various parameters (for example, based on port number or protocol) into a number of traffic classes. Each resulting traffic class can be treated differently in order to differentiate the service implied for the data generator or consumer.

Reference [1] is <u>RFC 2475</u> – An Architecture for Differentiated Services

- Classification is primarily based on transport header and application header information
 - TCP and UDP port numbers are the most basic classifiers

The "First Mile"

- •For network operators, traffic classification is important for meeting customer service expectations
 - Traffic classification and PEP work hand in hand
- The last mile is really the first mile when it comes to traffic classification
 - The network for which classification is most important is the one to which the end user is directly connected
 - Besides prioritizing (e.g.) interactive over background traffic with respect to available resources the network device may even have multiple paths with different characteristics available to it

QUIC Encryption

- Encryption is mandatory for QUIC (for good reasons)
 - QUIC encrypts not just the payload but also the transport header information
- Encryption hides the transport and application information used for performance and enhancement and classification
 - Slow start and congestion control must operate end to end
 - Error recovery must happen end to end
 - All traffic looks the same making classification difficult