Making QUIC work with satellites

Christian Huitema

January 19, 2022

What did break in the past

- TCP slow start
 - log2(BDP/starting Window)*RTT
 - Not just start up, also recovery from trains of packet losses
- Loss recovery
 - Too many losses drive CWIN down
 - Too many losses to carry in SACK lists
 - Losses on Wi-Fi link slow to correct on satellite link
- ACK Congestion
 - Common case of 100Mps downlink, 1 Mps uplink
 - One ACK for 2 packets causes uplink congestion

Challenges can be solved end-to-end

- Connection startup
 - Remember previous connections, EBDP options
 - Use bandwidth evaluation during startup, variants of packet train, ramp faster
- Loss Recovery
 - Select CC algorithms that are less sensitive to packet loss BBR
 - QUIC ACK frames can carry large number of ACK-ranges
 - Possibly, develop FEC for QUIC
- ACK Congestion
 - QUIC delayed ACK extension
 - Typically one ACK for 64KB of packets

The real issue is testing!

- If it is not tested, it probably does not work
 - Added satellite scenarios to Picoquic test suite, all tests pass.
- Scenario are mostly tested if "main line"
 - Wireless was for a long time "exotic", is now mainline
 - High speed transmissions are mainline in QUIC
 - Long delay links, EBMP, FEC, not so much
- For "exotic" scenarios, specific software required
 - Delayed ACK Extension is mainline in clients
 - Server-side improvements may be sufficient
 - Servers can implement EBMP and BBR unilaterally.

