

QUIC and its impact on secured transport layer management in SATCOM systems

Wed, 19th of January 2022

Time: 8am PDT, 11am EDT, 5pm CET, 1am JST

Context - MYTH overview

MYTH #1: SATCOM systems are quite specific

Indeed:

- Limited frequency resource (regulation, etc.)
- Dish alignment
- No standards for network infrastructure (lack of interoperability)

BUT:

 High level architecture similar to other access networks

Context - MYTH overview

MYTH #2: There is a huge latency in SATCOM systems

Light page -Wikipedia type

TOOWAY satellite Internet access:

- Solution furnished by ISP ALSATIS with EUTELSAT operator
- 20Mbps download / 6 Mbps upload

Context - MYTH overview

Not a

MYTH #3: SATCOM systems require 'middleboxes'

Performance Enhancing Proxy (PEP) – RFC 3135

"magic" mix of transport technologies

- Split TCP connections
- Transparent compression

No support of the most recent improvements at the servers or clients

the**Networking** Channel

Context - Transport in SATCOM

Connection initialization:

 Setting up the connection requires three round trips, impacting the moment from which the actual data can be transmitted

Required window size:

 To fully exploit the available capacity, it is necessary to increase the sending buffers are the client and the server

Reliability:

- Packet loss detection and correction is slow (end-to-end retransmission performance is also affected on GEO access)
- · Convergence of congestion control:
 - The exponential increase in data rate is considerably slowed down for a GEO satellite.

the**Networking** Channel

Context - Transport in SATCOM

Connection initialization:

- Setting up the connection requires three round trips, impacting the moment from which the actual data can be transmitted
- [PEP-TCP] Can enable TCP Fast-Open

Required window size:

- To fully exploit the available capacity, it is necessary to increase the sending buffers are the client and the server
- [PEP-TCP] Improved by custom TCP buffers in TCP PEP

Reliability:

- Packet loss detection and correction is slow (end-to-end retransmission performance is also affected on GEO access)
- ☐ [PEP-TCP] Loss recovery in splitted in three segments

Convergence of congestion control:

- The exponential increase in data rate is considerably slowed down for a GEO satellite.
- [PEP-TCP] Improved by custom TCP AIMD in TCP PEP
- [PEP-TCP] Improved by custom TCP initial windows in TCP PEP

Context - QUIC

Quick User Datagram Protocol (UDP) Internet Connections (QUIC)

- Deployed for Google services since 2012
- Standardized by IETF in RFC 8999, 9000 and 9001
- Represents +/- 30% of broadband traffic

Application		HTTP	HTTP
	Confidentiality	TLS	
Transport	Flow and congestion control Reliability	TCP	QUIC
			UDP
Network		IP	IP

the**Networking** Channel

Context - Transport in SATCOM

- Connection initialization:
 - Setting up the connection requires three round trips, impacting the moment from which the actual data can be transmitted
 - [PEP-TCP] Can enable TCP Fast-Open
 - ??
- Required window size:
 - To fully exploit the available capacity, it is necessary to increase the sending buffers are the client and the server
 - [PEP-TCP] Improved by custom TCP buffers in TCP PEP
 - · ??
- Reliability:
 - Packet loss detection and correction is slow (end-to-end retransmission performance is also affected on GEO access)
 - ☐ [PEP-TCP] Loss recovery in splitted in three segments
 - **??**
- Convergence of congestion control:
 - The exponential increase in data rate is considerably slowed down for a GEO satellite.
 - [PEP-TCP] Improved by custom TCP AIMD in TCP PEP
 - [PEP-TCP] Improved by custom TCP initial windows in TCP PEP
 - ??

Agenda

- "The Impact of QUIC on SATCOM PEP and Traffic Classification" John Border, Chi-Jiun Su (Hughes Network Systems)
- "Tuning QUIC to avoid using PEP" Christian Huitema (Private Octopus)
- "Operational constraints with QUIC" Isabelle Hamchaoui, Alexandre Ferrieux, Emile Stephan (Orange Labs)
- "Low Earth Orbit impact" Marie-José Montpetit (Telecom Paris Sud)
- "Open Discussion" All