

Institute for the Wireless Internet of Things at Northeastern University

O-RAN Alliance: Next Generation research Group

Panel Discussion Mar 29 2023

Abhimanyu Gosain Northeastern University

Radio Access Network Terminology

Open RAN: Much More than "Horizontal Disaggregation"

Traditional "black-box"

RF

PDCP

PHY

SDAP

RRC

MAC

RLC

Near-real-O-CU O-DU O-RU time RIC F1 xApp 1 Open Fronthaul E2 XApp N Virtualized on Virtualized on Virtualized on Virtualized on bare-metal bare-metal bare-metal bare-metal server server server server O-Cloud in Proprietary in O-Cloud in Edge Cloud **Regional Cloud Cell Site** O-DU O-CU RF Open E2 Fronthaul O-DU RF Edge Cloud O-RU Near-real-time RIC

L. Bonati, M. Polese, S. D'Oro, S. Basagni, and T. Melodia, "Open, Programmable, and Virtualized 5G Networks: State-of-the-Art and the Road Ahead, "Computer Networks, vol. 182, Dec 2020.

at Northeastern

Open, programmable and virtualized

End to End Virtualized Programmable B5G Architecture

3GPP and Open RAN: More Similar than Different

O-RAN Alliance

Focus on RAN Optimization and Inline hardware acceleration in the physical layer.

RIC uses AI/ML to optimize RAN

Defines control, user and synchronization plane (CUS) interface

<u>3GPP</u>

Defines Signaling Mechanism Control Plane Messages User Plane Messages Data Transmission Messages F1/E1 Interface and CU,DU,RU

Small Cell Forum

Focus on RAN Disaggregation

Focus on Radio Resource Management

Defines The network functional application platform interface (nFAPI) and p5,p7,p9 Interfaces

Comparative Tech Specs: Option 7.2X v/s 6

TABLE 1	
3GPP Latency and bitrate requirements for	or each split [3].

Split	Functional	One-way	Bitrate (Gbps)	
Option	Split	latency	DL	UL
01	RRC-PDCP	10 ms	4	3
O2	PDCP - High RLC	10 ms	4	3
O3	High RLC - Low RLC	10 ms	4	3
O4	Low RLC - High MAC	1 ms	4	3
O5	High MAC - Low MAC	< 1 ms	4	3
O6	Low MAC - High PHY	$250 \ \mu s$	4.13	5.64
O7	High PHY - Low PHY	$250 \ \mu s$	86.1*	86.1*
O8	Low PHY - RF	$250 \ \mu s$	157.3	157.3

O7 split maximum value.*

 RAN Protocol
 CU - Central Unit
 RC - RRC
 LR - Low RLC
 HP - High PHY

 O 3GPP Functional Split
 DU - Distributed Unit
 PD - PDCP
 HM - High MAC
 LP - Low MAC

 NG-RAN Node
 RU - Radio Unit
 HR - High RLC
 LM - Low MAC
 RF - Radio Frequency

02-3GPP TS 38.801

O6- Small Cell Forum; FAPI/nFAPI

O7- O-RAN Alliance; eCPRI/FrontHaul

3GPP 5G to 6G Path

- Release 17 completed June 2022
- Primary aim of Rel-17 is to improve 5GS performance, support new use cases and verticals, and provide ubiquitous connectivity in different deployment conditions and scenarios
- 3GPP release 18 represents a major evolution of the 5G System and due to this the 3GPP has decided to brand it as the first release of 5G Advanced.
- Rel-18 will include major enhancements in the areas of artificial intelligence (AI) and extended reality that will enable highly intelligent network solutions that can support a wider variety of use cases
- Rel-19 is starting to look at advanced services such as Integrated Sensing & Comms, localized mobile metaverse services, service robots, and ambient powered IoT

Today's Deployments are based on R15 Deployments are typically ~24 months after a 3GPP release completion

at Northeastern